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The oxidation of hydrogen sulfide (H,S) has led to the formation of some of the world's largest caves through a
process known as sulfuric acid speleogenesis (SAS). Here we present a multi-year study of the large, sulfidic, and
actively-forming Frasassi cave system, Italy. We show that despite the presence of abundant sulfide-oxidizing
biofilms in Frasassi streams, H,S(g) degassing to the cave atmosphere was the major sink for dissolved sulfide.
Degassing rates ranged from 0.9 to 80 umol m~2 s~ !, whereas microbial oxidation rates were between 0.15
and 2.0 umol m~2 s~ . Furthermore, microsensor measurements showed that sulfuric acid is not a major end
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1. Introduction

Sulfuric acid speleogenesis (SAS) produces porosity in carbonate
aquifers where anoxic, hydrogen-sulfide (H,S)-bearing fluids interact
with air-filled voids or oxygenated ground water to produce sulfuric
acid (H,S04). Ancient karst features formed as a result of SAS include
some of the world's largest and most spectacular caves, such as the
massive Lechuguilla Cave and Carlsbad Caverns in New Mexico
(Palmer, 2007) and the exquisitely decorated Kap-Kutan Cave in
Turkmenistan (Bottrell et al., 2001). As many as 5% of explored caves
may have had a sulfidic origin (Palmer, 2007), with indications from
subsurface drilling that many more are present but inaccessible
(Palmer, 1991). In addition to caves, SAS is associated with widespread
porosity development in stratified carbonate aquifers and petroleum
reservoirs (Hill, 1987; Hill, 1995; Engel and Randall, 2011), with impor-
tant implications for fluid flow and migration. CO, release from sulfuric
acid dissolution of carbonates may also have long-term climate impacts
and represent an understudied component of the geological carbon
cycle (Torres et al., 2014).
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The H,S in anoxic carbonate aquifers is most commonly derived
from organic-rich sediments or volcanic sources (Egemeier, 1981;
Hose et al., 2000; Sarbu, 2000a). Where those ground waters are
exposed to oxygen, often at the cave water table, the complete oxidation
of H,S to sulfuric acid,

H,S + 20,—H,S04, (1)

can result in extremely rapid carbonate dissolution and aggressive
speleogenesis. Depending on where the H,S is oxidized, carbonate
dissolution could occur in air-filled areas above the water table (subaer-
ial dissolution) or in the zone below the water table (subaqueous
dissolution).

In pioneering studies, sulfidic caves were proposed to form primarily
above the water table where H,S(g) degasses into the cave atmosphere
and oxidizes to sulfuric acid on moist cave walls and ceilings (Principi,
1931; Egemeier, 1981). Where subaerial limestone surfaces are exposed
to sulfuric acid, limestone is replaced by a gypsum corrosion residue,

SO2™ + 2H" + CaCO3 + H,0—CaS0; - 2H,0 + CO,. (2)

Cave enlargement proceeds as gypsum crusts thicken and eventually
detach, falling to the cave floor where they can be removed by gypsum-
undersaturated ground waters (Egemeier, 1981; Hose et al., 2000) or
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remain as gypsum floor deposits and ‘glaciers’ (Davis, 2000; Galdenzi
and Maruoka, 2003).

However, recent work on SAS has cast doubt on the importance of
sulfuric acid corrosion above the water table. H,S oxidation represents
a rich source of chemical energy, and sulfidic aquifers with inputs of
electron acceptors such as oxygen and nitrate are extensively colonized
by chemolithoautotrophic sulfide-oxidizing microorganisms (Hose
et al., 2000; Engel et al., 2004; Macalady et al., 2008). Because microor-
ganisms can oxidize sulfide much faster than abiotic rates alone, they
may play an important role in acid production and limestone dissolu-
tion in microaerophilic streams where sulfide oxidation is otherwise
abiotically limited (Galdenzi et al., 1999; Hose et al., 2000; Engel et al.,
2004). Engel et al. (2004) demonstrated that more than 90% of sulfide
disappearance from the stream in Lower Kane Cave, WY, USA, is due
to microbial oxidation. Engel et al. (2004) also found evidence that
sulfide-oxidizing bacteria enhance limestone dissolution by localizing
sulfuric acid production at mineral surfaces, and a later study by
Steinhauer et al. (2010) showed that aqueous bioreactors inoculated
with sulfidic cave biofilms dissolve limestone up to seven times faster
than abiotic control reactors.

Observations made in ancient sulfidic caves provide evidence for
both subaerial and subaqueous limestone corrosion by SAS. Some
studies have argued that, based on morphological evidence, sulfuric
acid production below the water table is the main dissolution process
for SAS (Davis, 1980; Hill, 1987; Forti et al., 2002). Indeed, the role of
subaerial versus subaqueous processes in Carlsbad Cavern currently
remains controversial (e.g., Jagnow et al., 2000; Forti et al., 2002;
Palmer et al., 2009; Calaforra and De Waele, 2011). However, morpho-
logical evidence for subaerial corrosion including cupolas, megascallops,
domes, vents, niches, notches, and other features can be found in many
sulfidic caves, suggesting that subaerial SAS may be more widespread
than generally considered (Audra et al., 2007; Audra et al., 2009; Plan
et al., 2012; Temovski et al., 2013). In early work in Frasassi, Galdenzi
(1990) proposed a model for cavern development in the Frasassi cave
system in which both subaerial and subaqueous processes were
important.

Thus, the relative importance of subaerial, subaqueous, and microbi-
al processes in SAS remains controversial, perhaps because a quantita-
tive accounting of the mechanisms and rates of these processes under
differing environmental conditions is lacking. In light of this, we
made in situ measurements of H,S(g) degassing and microbial sulfide
oxidation over multiple sites and seasons in the large, actively-
forming, and hydrologically dynamic Frasassi cave system (Italy). In
Frasassi, morphological and mineralogical observations provide qualita-
tive evidence that significant limestone corrosion has occurred both
above and below the water table in the recent past (Galdenzi, 1990).
Furthermore, comparable rates of subaerial and subaqueous limestone
dissolution are occurring within several meters of the air-water
interface (Galdenzi et al., 1997; Mariani et al., 2007). Based on prior
observations of pervasive colonization of Frasassi streams and pools
by sulfur oxidizing microorganisms (Macalady et al., 2006; Macalady
et al,, 2008), we hypothesized that biological oxidation below the
water table would account for the majority of dissolved H,S disappear-
ance from cave streams. In contrast, here we found that most sulfide lost
from streams is released to the cave atmosphere, and that sulfuric acid is
not an important end product of microbial sulfide oxidation within
submerged biofilms covering rock and sediment surfaces.

2. The Frasassi cave system

The Grotta Grande del Vento-Grotta del Fiume (Frasassi) cave
system (43.4012 N, 12.9656 E) is located in the Mt. Frasassi-Mt.
Valmontagnana anticline in the northeastern Apennines, Italy (Fig. 1).
The system includes over 25 km of irregular and ramiform passages in
pure platform limestones of the Hettangian Calcare Massiccio Forma-
tion (Galdenzi and Maruoka, 2003; Mariani et al., 2007). General

characteristics of the hydrology and geochemistry of the cave system
have been previously described (Galdenzi et al., 2008; Galdenzi,
2012). Dissolved sulfide in the Frasassi aquifer is likely derived from
bacterial sulfate reduction in organic-rich lenses within underlying
evaporites of the Triassic Burano Formation. In the Northeast sector of
the active cave level, multiple H,S-rich springs emerge at the cave
water table and flow into streams and pools accessible by technical
caving routes. Total dissolved sulfide (H,St) concentrations in streams
and pools vary from below detection (<2 uM) to 600 pM (Galdenzi
et al., 2008; Macalady et al., 2008), whereas dissolved oxygen concen-
trations in the same waters range from below detection (<2 pM) to
30 uM (Macalady et al., 2008). Nitrate concentrations are perennially
undetectable (<0.1 uM) (Macalady et al., 2008). Sulfidic cave waters
are slightly saline (conductivity 1.5-3.5 mS/cm), and consistently
between 13 and 14 °C year round. Within 1 m of the water table,
H,S(g) concentrations in the cave air range from <0.2 to 25 parts-per-
million by volume (ppmv), and are typically less than 10 ppmv
(Macalady et al., 2007).

3. Methods
3.1. Field sampling and chemical analyses

Concentrations of H,St (total dissolved sulfide) and O, in cave
streams were measured with a portable spectrophotometer (Hach,
Loveland, CO) using methylene blue (Hach method 690) and indigo
carmine (Hach method 8316) methods, respectively. Replicate H,St
analyses were within 3% of each other, and replicate O, analyses were
within 25% of each other. Water temperature, pH and conductivity
were measured using a 350i multimeter and handheld probes (WTW,
Weilheim, Germany). Water samples for laboratory analyses were
filtered immediately in the field (0.2 um) into acid-washed containers.
Samples for dissolved calcium and other cations were preserved with
concentrated nitric acid and measured by inductively coupled plasma
atomic emission spectroscopy (ICP-AES) at the Penn State Materials
Characterization Laboratory. Dissolved inorganic carbon (DIC) was
determined by headspace CO,(g) measurements using the method of
Dawson et al. (2013).

Surface flow velocity was determined using floating indicators.
Discharge was calculated by multiplying surface flow velocity with the
stream cross sectional area and a factor of 0.85, which corrects for differ-
ences between surface and depth-averaged subsurface flow velocities
(Gallagher and Stevenson, 1999).

3.2. H,S degassing rate

The rate of H,S(g) degassing was measured using a portable flux
chamber connected to a handheld gas detector (MX2100, ENMET
Corp., USA) (Fig. A.1). Similar flux chamber approaches have been wide-
ly applied for measuring air-water gas exchange (Frankignoulle, 1988;
Kremer et al., 2003; Borges et al., 2004). The flux chamber was connect-
ed to the detector by a BX2100 air pump (ENMET Corp., USA), and the
degassing flux was calculated from the rate of increase of H,S(g) in
the chamber, after correcting for air removed by the pump and for
detector response time (Appendix A.1, Fig. A.1 and A.2). To compensate
for uncertainty introduced by the flux-chamber system, between 2 and
5 measurements were performed at each sampling location. Complete
details on H,S(g) degassing measurements are provided in the Supple-
mentary methods (Appendix A.1).

3.3. In situ microsensor analyses

H,St consumption due to microbial oxidation was determined by
microsensors attached to a custom-designed portable microsensing
apparatus (Weber et al., 2007). Vertical concentration profiles of H,Sr,
0, and pH were measured in biofilms covering the submersed
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Fig. 1. Map of the Frasassi cave system, showing sampling locations. Base map after Mariani et al. (2007). No technical caving is required to access sites CS and VC.

sediments and rocks, and H,St flux was determined from the H,St
gradient using Fick's first law of diffusion.

Microsensors (tip diameters of 20-30 um) were prepared, calibrated
and used as previously described. Clark-type O, electrodes (Revsbech,
1989) were calibrated by a linear two-point calibration in oxygen-
saturated water and anoxic sediment. H,S electrodes (Kiihl et al.,
1998) were calibrated by linear two-point calibration in sulfidic stream
water and a Na,S standard. H,St values were calculated from
microsensor-derived H,S(aq) concentrations and pH values using equa-
tion H,St = H,S(aq) x [1 + Ky / H30™], with the K; value corrected
for temperature and salinity according to Millero et al. (1988). pH
electrodes (de Beer et al., 2006) were calibrated using buffer solutions
of pH 4.01 and pH 7.00 (Mettler-Toledo, Giessen, Germany).

We first attempted microsensor measurements in cave biofilms in
2009, but despite many successful measurements in sulfidic springs
outside the cave, we had no success with H,S sensors and limited
success with oxygen sensors inside the cave. The following year we
returned with the Caver Operated Microsensor System (COMS;
Fig. A.3C), which is a smaller and more robust version of the motorized
Diver Operated Microsensor System (DOMS) described by Weber et al.
(2007). By packing the sensor contacts with hygroscopic beads and
sealing all contacts as completely as possible prior to entering the
cave, the COMS electronics were protected from moisture and H,S(g)
vapors in the cave air, which resulted in a substantially improved
stability of the signal.

Fluxes of microbial sulfide oxidation (Juict,s) in the biofilms were
derived from the measured H,S gradients according to the Fick's first
law of diffusion, assuming steady state,

dC 29T
Jnict,s =D ;ZS ; 3)

where D is the diffusion coefficient of H,S(aq) corrected for in situ
temperature according to Jergensen and Revsbech (1983). Fluxes
measured at each site were averaged from three separate microsensor
profiles collected within 1 cm? of investigated biofilm.

3.4. Stream model

A 1-dimensional reaction-transport model was used to relate the
loss of H,St to chemical changes in the bulk stream water. The processes
affecting the H,Sy loss included (1) H,S(g) degassing from the stream
surface to the cave atmosphere, (2) microbial sulfide oxidation in
stream biofilms, and (3) abiotic sulfide oxidation, all of which were
constrained by the field measurements. Assuming steady state approx-
imation, changes in H,St concentration (denoted C;, mol m~3) along
the stream (x, m) are given by

dcC. 1 1
d_xsv = _Jgas H _Jmicﬁ —Rabios (4)

where v is stream flow velocity (m s~ ') and h is depth (m). The H,S(g)
degassing flux, Jeas (mol m~2 s~ 1) was dependent on stream flow
velocity and followed an empirical relationship derived from field
measurements (Fig. 2). The H,St removal flux due to microbial oxida-
tion, Jmic (Mol m~2 s~ 1), was assumed to span the range determined
by microsensors across all measured sites. The rate of abiotic chemical
oxidation, Rgpi, (mol m~> s~ 1), was calculated based on concentrations
of dissolved H,St and O, using kinetic equations from Millero et al.
(1987). Rates for air-water exchange of CO, were calculated using
theoretical volatilization equations (Schwarzenbach et al., 1993) using
measured CO,(aq) values and the assumption that mass transfer coeffi-
cients for CO,(aq) and H,S(aq) were proportional. Downstream
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Fig. 2. (A) Conductivity versus H,Sr for Frasassi springs and streams measured from 2007
to 2010. (B) Measured H,S(g) degassing rates versus surface flow velocities. At the times
of measurement, H,St concentrations at site PC were between 450 and 560 pM and
between 100 and 190 pM at sites GB and RS.

changes in pH were calculated based on H,S(g) and CO,(g) degassing,
using the reaction block in PHREEQC (Parkhurst et al., 1999) to incre-
mentally remove H,S(aq) and CO,(aq) from the stream water.
Complete model derivation and input parameters are provided in the
Supplementary materials (Appendix A.2).

4. Results

Gas flux chamber measurements of areal rates of H,S(g) degassing in
Frasassi streams varied by two orders of magnitude, from 0.9 to
80 pumol m~2 s~ ! (Table 1). The large range in rates was mainly due
to variation in stream flow velocity and bulk H,S; concentration
(Fig. 2). In “type 1 sulfidic” cave waters (Fig. 2A), the degassing rates
increased approximately linearly with the surface flow velocity with a
slope of 218 umol m ™2 (1> = 0.89, p <0.001). A similar linear correlation

Table 1

Areal rates of H,Sy loss from cave streams.
Water type Site Range of values (umol m~—2 s~ 1) n
H>S(g) degassing
1 PC 0.9-80 31
2 RS 14-74 6
2 GB 3.0-4.0 19
Microbial sulfide oxidation
2 GS 0.45-0.73 2¢
2 (& 0.15-2.01 57
2 VC 0.08-0.34 8

Abiotic sulfide oxidation®

land2 43-107°-39-107°

2 Each measurement consists of three separate microsensor profiles from 1 cm? of
biofilm.

b Calculated by multiplying volumetric rates of abiotic oxidation by stream depth in the
model. Range of values for all streams and stream locations is given.

was found for “type 2 sulfidic” waters, but with a lower slope
(23.7 umol m™3, r* = 0.59, p < 0.001).

Conspicuous white biofilms at the sediment-water interface or
attached to submerged limestone surfaces were observed for all
sampling events. In these biofilms, O, and H,St concentrations exhibit-
ed steep gradients, confirming the role of microbial sulfide oxidation
as a sink for sulfide (Fig. 3 and Fig. A.4). Microbial sulfide oxidation
rates calculated from microsensor profiles ranged from 0.08 to
2.0 umol m~2 s~ (Table 1). pH did not change significantly across
biofilm-water interfaces or within the biofilms. However, pH did
decrease in organic-rich, anoxic sediments below the biofilms (Fig. 3).

At a site where a spring-fed sulfidic stream flowed without addition-
al ground water inputs or outputs (site PC; Fig. 1, Fig. A.3), bulk water
concentrations of H,St decreased while O, and pH increased down-
stream from the emergence (Fig. 4, symbols, and Fig. A.5). There was
no measurable change in dissolved Ca®™ (Tables A.1 and A.2). The
measured H,St and pH gradients were in good agreement with those
predicted by the reaction-transport model (Fig. 4, solid lines). This con-
firmed that degassing was the major driver of H,St loss (contributing on
average 88% to 98%) and pH increase in the bulk stream water. Benthic
microbial sulfide oxidation was only minor (on average 2% to 12%), and
abiotic oxidation in the bulk water was negligible (<0.03%; Table A.3).
Due to the fragility of the microsensor apparatus, we were not able to
obtain microsensor profiles from all sites (Table 1). However, we were
able to use rates measured in the cave to constrain the model.

After successful validation of the model at site PC, we applied it to
other sites (GB, RS, GS) where stream flow is more complex. At these
type 2 sulfidic water sites (Fig. 2A), H,S(g) degassing fluxes were gener-
ally lower than at site PC (Fig. 2B), although still larger than microbial
oxidation rates (Table 1). Model predictions suggested that, similar to
site PC, degassing was the major driver of H,St loss (contributing on
average 75% to 86% of total H,St depletion), whereas microbial sulfide
oxidation was less important (on average 14% to 25%; Table A.4).
Because these sites were influenced by non-quantified ground water
inputs, model predictions could not be reliably compared with field
data.

5. Discussion
5.1. Fate of H,S in Frasassi streams

As expected based on previous studies comparing biological and
abiotic sulfide oxidation rates (e.g., Jorgensen et al., 1979; Jannasch

water
biofilm
sedimen

#sediment-
. rock
‘% interface

=Y

65 7.0 7.5
pH

Fig. 3. Microsensor profiles from Frasassi stream biofilms for a site where O, H,St, and pH
data were all available (A). Panel (B) shows a pH profile (open circles) measured to the
sediment-rock interface at the same location, which resulted in the microsensor breaking.
A second pH profile from the same site is also shown (x symbols).
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Fig. 4. Comparison of modeled versus measured changes in H,St for the PC stream at
three different times of the year. Circles are measured H,St values and lines are model
output. The solid curve was modeled using the average microbial oxidation rate

(0.49 pmol m~2 s~ '), and dashed lines are with the minimum and maximum measured

rates (Table 1). Insets show modeled versus measured changes in pH due to H,S(g) and
CO,(g) degassing.

et al,, 1991; Jensen et al., 2009; Luther et al., 2011), sulfide removal by
microbial oxidation is much faster in Frasassi streams than abiotic
oxidation (Table 1). Our measured microbial oxidation rates are
consistent with microsensor-based measurements of microbial sulfide
oxidation in aphotic biofilms from a variety of other sulfidic environ-
ments, which can vary from 0.05 to 1.16 umol m~2 s~ ! (see compilation
by Schwedst et al,, 2011). Due to the fragility of the microsensor appara-
tus, we were not able to obtain microsensor profiles from all sites.
However, our measured rates nonetheless provide an appropriate
constraint for the model. Both in situ measurements and transport
modeling show that H,S(g) degassing rates are at least an order of
magnitude higher than microbial sulfide oxidation (Table 1). Addition-
ally, degassing explains the downstream increase in pH observed at site
PC (Fig. 4). Therefore we can be confident in the conclusion that most of
the sulfide lost from Frasassi streams is released to the cave atmosphere.
Our results directly challenge the notion that microbial sulfide oxidation
below the water table is generally the primary driver in SAS, as some
previous studies have suggested (Davis, 1980; Engel et al.,, 2004).

5.2. Role of biological sulfide oxidation

Although biological oxidation accounts for some of the sulfide
disappearance from Frasassi streams, pH microsensor profiles show
that the biofilms do not produce significant amounts of sulfuric acid
(Fig. 3). Therefore, the majority of the sulfide is likely oxidized to
intermediate sulfur species such as zero-valent sulfur,

2H,S + 0,-2S° + 2H,0. (5)

In contrast, pH decreases are regularly observed in biofilms from
other environments where sulfide is completely oxidized to sulfuric
acid (e.g., Jorgensen and Revsbech, 1983; Schwedt et al., 2011).
Consistent with this interpretation, abundant intracellular and/or

extracellular S° particles are perennially observed in Frasassi biofilms
and sediments, regardless of their taxonomic composition or the
surrounding water chemistry (Macalady et al., 2006; Macalady et al.,
2008), which give the stream biofilms their conspicuous white color
(Fig. A.3). Incomplete sulfide oxidation thus supports a thriving
chemosynthetic ecosystem in the streams, but does not contribute
directly to acid production.

Decreases in pH and increases in H,St concentration were, however,
observed in the anoxic sediments immediately below the zone of sulfide
oxidation, indicating that sulfur and/or carbon recycling produces acid
(Fig. 3). Furthermore, a single pH profile obtained by a microsensor
that broke when it accidentally hit hard rock indicated that the pH
remained low in deeper sediments down to the sediment-rock inter-
face (Fig. 3B). The observed pH decrease in the sediments could be
due to organic acid and CO, production via fermentation, sulfate reduc-
tion in the absence of metal sulfide precipitation (Ben-Yaakov, 1973;
Boudreau and Canfield, 1988; Meister, 2013), and/or disproportionation
of S° (Finster et al., 1998). Although sulfur-oxidizing autotrophs in the
biofilms supply organic matter for fermentation and sulfate reduction
and S’ for sulfur disproportionation (Macalady et al., 2008), it appears
that sulfide oxidation and acid production are only weakly coupled.

5.3. Implications for speleogenesis in the Frasassi cave system

Most of the H,S(g) that degasses from cave streams is thought to
oxidize to sulfuric acid on moist wall surfaces in the oxygen-rich cave
atmosphere. Near flowing sulfidic streams, cave walls and ceilings are
covered with acidic (pH < 4) gypsum corrosion residues often >10 cm
thick, and the gypsum surface is colonized by extremophilic sulfur-
oxidizers that produce highly acidic (pH 0-2) subaerial biofilms
(Macalady et al., 2007). In some locations, small yellow elemental sulfur
rosettes are associated with wall and biofilm surfaces (Macalady et al.,
2007; Jones et al., 2012). Further from flowing streams, gypsum crusts
thin and eventually give way to exposed limestone and mildly acidic
(pH 6) wall communities (Jones et al., 2008). In addition to biological
sulfide oxidation by these wall microbial communities, abiotic sulfide
oxidation may also be important above the water table.

Widespread evidence for aggressive subaerial corrosion has been
documented in multiple cave levels that lie above the currently active
level, including cave passage geometries, cupolas and other corrosion
features above vertical phreatic conduits, and extensive microcrystal-
line gypsum deposits with light S isotopic signatures (Galdenzi, 1990;
Galdenzi and Maruoka, 2003; Galdenzi, 2012). These features indicate
that conditions favorable for strong H,S(g) degassing have existed
over long periods, at least in the last phases of the 2-3 million year
history of cave development in the Frasassi system (Taddeucci et al.,
1992; Galdenzi and Maruoka, 2003).

In multi-year limestone tablet dissolution experiments conducted at
sample site RS (Galdenzi et al., 1997), average mass loss was similar for
tablets incubated above and below the stream surface (Fig. 5; see also
Galdenzi, 2012). Methods for this experiment are provided here in the
Supplementary content (Appendix A.3). Since microbial sulfide
consumption in Frasassi streams does not appear to result in significant
sulfuric acid production, these results imply that other processes in the
stream water may also be important for speleogenesis. Notably, rapid
carbonate dissolution also occurs at Frasassi below stable haloclines in
stratified lakes where oxygen is below detection limits (Mariani et al.,
2007).

5.4. Implications for sulfuric acid speleogenesis

Our results suggest that apparently conflicting views on subaerial
versus subaqueous SAS near the water table can be reconciled using a
conceptual model that takes H,Sy concentrations and water flow
characteristics into account (Fig. 6). Near flowing waters in Frasassi,
degassing predominates due to high H,St concentration and rapid
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Fig. 5. Mass loss from replicate limestone tablets installed above and below the water table
at site RS over a 5-year period (Galdenzi et al., 1997). For comparison, the range of values
determined at the same site for submerged tablets in a later study (Galdenzi, 2012) are
also shown (gray bar, n = 17), including two extreme values (arrow). Subaerial
dissolution was not measured in this later study (Galdenzi, 2012).

stream flow. In contrast, streams in Lower Kane Cave, WY, USA,
have rapid flow but much lower H,St concentrations, and microbial
oxidation is therefore faster than degassing (Engel et al.,, 2004). Consis-
tent with our conceptual model, Engel et al. (2004) report H,S(g)
degassing fluxes between 0.35 and 1.3 umol m~2 s~ ! for the Lower
Kane Cave stream, which are slower than H,S(g) degassing fluxes at
most Frasassi locations but within the range of microbial oxidation
fluxes measured here (Table 1).

Near sulfidic Frasassi lakes such as Lago Verde and Lago Claudia,
there is no detectable H,S(g) in the cave air and little to no subaerial
gypsum deposition above the water table due to very slow water flow.
Similarly, Movile Cave (Romania) has high dissolved sulfide but low
cave air H,S(g), slow gypsum precipitation, and scarce subaerial
corrosion features (Sarbu, 2000b; Galdenzi, 2001), consistent with its
largely stagnant water table. Rapid H,S(g) degassing and subaerial
corrosion are expected for most locations within Cueva de Villa Luz,
Mexico, due to high H,St and turbulent water flow (Hose et al., 2000),
as well as near the highly sulfidic and turbulent cave streams in Grotta

Subaerial sulfuric acid speleogenesis dominates
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Fig. 6. Conceptual framework for predicting when and where subaerial corrosion is
expected as the dominant mechanism for speleogenesis in sulfidic caves. Boxes represent
the range of H,St and flow velocity for sulfidic waters reported this study and for
previously studied sulfidic cave systems.

Nuova di Rio Garrafo near Acquasanta Terme, Italy (Galdenzi et al.,
2010; Jones et al., 2010). Water temperature and thermal air flow may
also impact H,S(g) dynamics in these and other caves (Galdenzi,
2001; Audra et al., 2007; Audra et al., 2009), and future research will
continue to explore how H,St concentration, stream flow characteris-
tics, and other factors impact subaerial sulfuric acid speleogenesis and
the evolution of sulfidic karst systems.

We were surprised to find that the presence of a conspicuous
sulfide-oxidizing microbiota is not a reliable indicator for subaqueous
SAS. However, we also note that microbial recycling of chemoautotro-
phic biofilms produces acidity that may contribute to limestone dissolu-
tion even under conditions where sulfuric acid is not directly produced
by chemosynthesis. Microbially-driven speleogenesis may therefore
occur in a broader range of carbonate-hosted subsurface ecosystems,
powered by chemosynthetically-derived organic carbon.
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